132x^2-23=132

Simple and best practice solution for 132x^2-23=132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 132x^2-23=132 equation:



132x^2-23=132
We move all terms to the left:
132x^2-23-(132)=0
We add all the numbers together, and all the variables
132x^2-155=0
a = 132; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·132·(-155)
Δ = 81840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{81840}=\sqrt{16*5115}=\sqrt{16}*\sqrt{5115}=4\sqrt{5115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5115}}{2*132}=\frac{0-4\sqrt{5115}}{264} =-\frac{4\sqrt{5115}}{264} =-\frac{\sqrt{5115}}{66} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5115}}{2*132}=\frac{0+4\sqrt{5115}}{264} =\frac{4\sqrt{5115}}{264} =\frac{\sqrt{5115}}{66} $

See similar equations:

| 0=(9+2i)+(1-7i) | | 2x/5+x/2=9/2 | | a²+a=2 | | 4x^2-16=-24x | | 150m-75m+43,875=45,450-150m | | 3x+7+8x-12=6x+10 | | 4(3-6a)=3 | | 4x+3=5(4/5+1)-2 | | -4x+2=-2(x+3) | | -4w+15=-50w-2 | | 5(x+2)+x=2(x+5)+4 | | x-18x-3=-48 | | -2/7x-4/35x+1/5x=-49 | | -5r+6=6 | | (1/x)(50)=25 | | 5/11x+2/3x-1/6=-189 | | 60y-2=-6y+15 | | 8-3k=3k=2 | | 0=−0.075x+1.35, | | 0=(5-7i)-(8+2i) | | 5(×+2)+x=2(x+5)+4 | | -6k/8=3 | | 0=-0.075x+1.35 | | 3y+8=9 | | 6y-1/5=-3/5y+3/2 | | 2y+3y=23 | | 2.8x9=25.2 | | 5/11x+2/3-1/6x=-189 | | 0=3.5x^2+18x-13.5 | | -9m=-2 | | 4w-1÷3+3w+5÷4=3 | | 4x-3+2x+5=27 |

Equations solver categories